

Vol. 6, Issue 8

E-ISSN: 2582-9467 Popular Article Himshikha (2025)

Role of Modelling in Soil Science and Different Models Used

Himshikha*

Ph.D. Scholar, Punjab Agricultural University, Ludhiana, 141004

Corresponding Author

Himshikha

Email: joshihimshikha1@gmail.com

Crop growth forecast, Soil modelling, Soil process simulation, Soil-crop models, Ecosystem services

How to cite this article:

Himshikha. 2025. Role of Modelling in Soil Science and Different Models Used. *Vigyan Varta* 6(8): 94-96.

ABSTRACT

Modelling is important in soil science as it aggregates the physical, chemical, and biological processes in a particular soil and forecasts its behavior along with ecosystem services it offers. Soil science is an interdisciplinary discipline ranging from the micro-scale to the landscape scale. It facilitates scenario analysis and decision-making at different scales. There are a number of models that mimic various processes, e.g.; hydrological models (SWAT), soil-crop models (DSSAT), organic matter models (RothC), and microbial models that mimic water flow, crop yields, carbon, and nutrient cycling. Traditionally, true integration of various processes has been challenging. New process representations transcending scale integration challenges and AI-facilitated approaches are enhancing model precision and multipurpose application. Soil models continue to be central towards meeting global goals, integrated food systems and climate change adaptive strategies.

INTRODUCTION

odelling plays a very significant function in soil science. It enables one to understand, quantify, and analyse the complex processes and interactions underlying soil behaviour and ecosystem services at different points in time. Because

soils are taken to be dynamic systems controlled by a plethora of physical, chemical, and biological forces, practitioners can model situations using simulation which aids in assessing impacts and guides rational land use planning.

August 2025 94 | P a g e

Role of Modelling in Soil Science:

- ✓ **Processes:** Models integrate understanding of soil processes e.g., water movement, nutrient cycling, and microbial activity over several spatial and temporal scales, from microscopic aggregates to whole landscapes (Campbell & Norman, 1998).
- ✓ **Prediction and Analysis:** Through the simulation of soil response to land use, climate change, and management practices, models make predictions of environmental impacts, carbon sequestration, soil degradation, and crop yields (Jones *et al.*, 2003; Parton *et al.*, 1987).
- ✓ **Decision Support System:** Models provide policy and management advice by testing the impacts of interventions such as fertilization, irrigation, and tillage and optimizing productivity while reducing adverse environmental impacts (Srinivasan *et al.*, 1998).
- ✓ Ecosystem Services Understanding: Soil models clarify how soil provides ecosystem services like filtration of water, carbon sequestration, and support for biodiversity, thereby aiding ecosystem-based management strategies.
- ✓ Hypothesis Testing and Research: Modelling enables scientists to test hypotheses regarding soil processes, determine areas of knowledge gaps, and plan experiments more effectively.

Types of Soil Models Used

Soil models differ in their complexity and scope from empirical to process-based and ecosystem-level models. Major categories and examples are:

Description	Example of Application Models/Methods
Model the	SWIM (Soil Water Infiltration
	<u> </u>

Hydrological	storage, and	and Movement),
Models	availability of	SWAT (Soil and
Widdels	water in soils	Water Assessment
	that is vital for	Tool) (Srinivasan
		′ `
	irrigation and	et al., 1998).
	drainage	
	planning.	
	Integrate soil	
	and plant	
	dynamics to	Dag a mar (Dag)
	predict crop	DSSAT (Decision
	growth and	Support System
Soil-Crop	yield under	for Agricultural
Models	various	Technology
		Transfer) (Jones
	management	et al., 2003).
	practices and	·
	climatic	
	conditions.	
	Model SOM	
	dynamics,	
	including	
	decomposition	CENTURY
Soil Organic	and	(Parton et al.,
Matter	stabilization.	1987), SOMIC,
(SOM)	often	RothC (Coleman
Models	incorporating	& Jenkinson,
Models	, .	Í .
	microbial	1996)
	activity and	
	temperature	
	sensitivity.	
	Focus on	
	microbial	
	processes,	
Microbial	nutrient	G '1 M' 1' 1
and	conversions,	Soil Microbial
Biogeochemic	and interactions	Ecosystem Model
al Models	between	(SMEM)
ur models	organisms in	
	soil with soil	
	make-up.	
	Simulate soil	
	functions at	a
Ecosystem	larger scales	SWAT, 1D-ICZ
and	(field to	(Integrated
Landscape	regional),	Critical Zone
Models	including land	Model)
	use and climate	
	change effects.	
	Assess changes	
	in soil physical	
Soil		Erosion risk
	properties,	assessment
Structure	aggregation, and	models, Soil
and Erosion	erosional	aggregation
Models	vulnerability	models
	under various	11104013
	conditions.	

August 2025 95 | Page

	Apply statistical	Artificial Neural
Markey	or AI techniques	
Machine	to predict soil	Networks (ANN),
Learning and	* .	Support Vector
Data-driven		Machines (SVM),
Models	behavior by	Random Forest
1,100015	modeling large	(Batjes, 1996)
	datasets.	(Daijes, 1990)

Challenges and Developments

- Scale Integration: At the microscopic to the entire landscape scale, simulation of soil processes continues to be challenging due to the heterogeneity of soil properties and interactions.
- **Data-Model Integration:** Proper calibration and validation of models through experimental or observational data is essential to make trustworthy predictions (Vanclooster *et al.*, 2000).
- Process Representation: Processes such as SOM stabilization and the structure of the soil with biologically controlled feedbacks are increasingly being represented (Parton et al., 1987).
- Application Expansion: Applications of models are expanding to fields such as climate change mitigation, soil health assessment, and policy development.

CONCLUSION:

Soil science modelling is central to advancing towards knowing, using resources sustainably, and solving global problems like food security and climate change. The variety of models from empirical to process-based to AI-based indicates the diversity of soils and the need for particular approaches depending on the research question or management objective.

REFERENCES:

Batjes, N. H. (1996). Development of a world data set of soil water retention properties using pedotransfer rules. *Geoderma*,

- 71(1–2), 31–52. https://doi.org/ 10.1016/0016-7061(95)00089-5
- Campbell, G. S., & Norman, J. M. (1998). An Introduction to Environmental Biophysics (2nd ed.). Springer.
- Coleman, K., & Jenkinson, D. S. (1996). RothC-26.3—A model for the turnover of carbon in soil. In D. S. Powlson, P. Smith, & J. U. Smith (Eds.), *Evaluation of soil organic matter models using existing long-term datasets* (pp. 237–246). Springer.
- Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., ... & Ritchie, J. T. (2003). The DSSAT cropping system model. *European Journal of Agronomy, 18*(3–4), 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7
- Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. *Soil Science Society of America Journal*, 51(5), 1173–1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x
- Srinivasan, R., Arnold, J. G., & Jones, C. A. (1998). Hydrologic modeling of the United States with the Soil and Water Assessment Tool. *International Journal of Water Resources Development, 14*(3), 315–325. https://doi.org/10.1080/07900629848987
- Vanclooster, M., Viaene, P., & Diels, J. (2000). SWAP: Simulation of water flow, solute transport and plant growth in the Soil-Water-Atmosphere-Plant environment. *Agricultural Water Management*, 44(1–3), 1–2. https://doi.org/10.1016/S0378-3774(99)00093-5

August 2025 96 | Page